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Abstract

The concept of structural interface possessing finite width and joining continuous media is presented. Mechanical
effects differentiating this model from conventional zero-thickness interfaces are explored for static and dynamic
problems. In the static case, the thickness of the interface introduces an additional characteristic length, providing a
parameter which can serve different design needs, for instance, may be employed to obtain neutral coated inclusions. In
the dynamic case, a number of effects arise, related to the inertia of the interface. In particular, examples demonstrate
that the design of inertial properties of the interface may be useful to produce sharp filters of elastic waves.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problems of mechanics involving imperfect interfaces are important in the design of adhesive joints,
smart composite structures and analysis of dispersive elastic waves within layered systems. Interfaces may
become crucial in different situations, for instance, in the struggle to enhance toughness of brittle materials
(such as ceramics, Clegg et al., 1990) or to induce peculiar electric transport properties. A strong research
effort was therefore devoted to this topic. Pioneering works on imperfect, linear interfaces were performed
by Goland and Reissner (1944) and Jones and Whittier (1967). Formal proofs that a linear interface may be
understood as a soft, thin elastic layer were given by Klarbring (1991), Geymonat and Krasucki (1996) and
Klarbring and Movchan (1998). A classification of model problems for thin-walled elastic inclusion is
povided in Movchan and Movchan (1995). Composite materials with imperfectly coated inclusions were
considered by Hashin (1990, 1992), Lipton and Vernescu (1995), Benveniste and Miloh (2001) and Ben-
veniste and Chen (2001). In the field of particle reinforced elastic materials, a peculiar behaviour may occur
when an inclusion is coated with an elastic layer or an interface, namely, the inclusion may become neutral,
in the sense that it does not alter the ambient linear field. Examples of this behaviour were provided by
Lipton (1997), Bigoni et al. (1998) and Milton and Serkov (2000). In particular, Bigoni et al. have shown
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Fig. 1. Metacarpal bone from a vulture’s wing; after Thompson (1942).

that stiffness parameters of the interface can be chosen in such a way that the dipole tensor associated with
the inclusions can be made to be zero. To complete the discussion, it may be worth mentioning that a
number of important mechanical situations involve non-linearity, which may be inherent to the constitutive
law of the interface (Rice and Wang, 1989; Xu and Needleman, 1994; Falk et al., 2001) or may be a
consequence of the fact that the solids joined through the interface suffer large strains (Bigoni et al., 1997;
Bigoni and Gei, 2001) or may be induced by both effects (Needleman, 1990; Camacho and Ortiz, 1996;
Levy, 1996).

A common characteristic of the above-mentioned models is that the thickness of the interface is zero (at
least for small strain). However, thickness of a structural interface is finite, preventing the non-physical
interpenetration of material occurring for compressive loads and introducing anisotropy in stiffness and
inertia. A number of examples of such structures joining continuous bodies can be found in biological
systems. In particular, we report in Fig. 1 a structure taken from the classical book by Thompson (1942)
and ! refer the interested reader to Gibson and Ashby (1988) and Menig et al. (2001). Biological examples
suggest the possibility that assemblages of continuous bodies and structures may present definitive me-
chanical advantages. As an industrial counterpart of this, different technological applications can indeed be
mentioned, ranging between structural engineering (Lakes, 1993), microelectromechanical systems (Elw-
enspoek and Wiegerink, 2001) and nanostructured materials (Gleiter, 2000).

In addition to the above-mentioned situations, a structural interface may model frictional contact be-
tween two solids (Haessig and Friedland, 1991) or a layer of strongly damaged material (see the experi-
ments reported by Geers (1997)). The latter context was explored by Maz’ya and Hanler (1993), who have
introduced an asymptotic model describing a weak non-local interface for a so-called ‘disintegrating solid’,
in a state of anti-plane shear. The Maz’ya and Hanler model emphasises a feature characterizing a finite-
thickness interface, namely, the non-locality of interaction between the boundaries joined through the in-
terface.

It follows from the above discussion that if, on one hand, real structures joining continuous bodies have
a finite dimension, an inertia, and peculiar anisotropic properties, on the other hand, all information re-
garding the microstructure are usually condensed in a zero-thickness model and all the above-mentioned
features consequently neglected. In the present paper we analyze the possibility that these may play a role in
a mechanical modelling. In statics, this possibility is explored solving (Section 3) the problem of an elastic
circular inclusion, connected to an infinite medium through a finite-thickness interface and subject to re-
mote, generic loading conditions. As a result, we find that the thickness of interface introduces a new
characteristic length, a specific form of anisotropy and eliminates material interpenetration. In the case of
dynamic problems, the analysis of wave propagation in periodic structures with interface boundaries
(Sections 4-6) reveals that the effects of the interfacial inertia become crucial in determining filtering

! A microstructure made up of collagen fibers also exists in the periodontal ligament, the thin and soft layer attaching the cementum
of the teeth to the adjacent alveolar bone. This finite-thickness, structural interface has been modelled as a zero-thickness, non-linear
interface by Gei et al. (in press).
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properties of the structure, which exhibits the possibility of producing remarkably narrow pass bands for
elastic waves of certain type.

2. The notion of imperfect interfaces

An interface is defined ‘imperfect’ if either displacements or tractions (or both) can be discontinuous
across it.

Interfaces of zero thickness model mechanical problems associated with cracks bridged by fibres, glide
planes of dislocations in a crystal, soft and thin adhesive layers. Normally, tractions are continuous at the
interface of zero thickness, namely

[t] = o, (1)

where the operator [ - | defines the jump across the interface, so that for any field ¢ defined in the bodies +
and — connected through the interface

[&] = ¢(x1) — d(x-).

Since a linear mass density can be regarded as zero for an interface of zero width, Eq. (1) holds true both
for statics and dynamics.

When a zero-thickness interface is linear, the displacement jump [u] across the interface is linearly re-
lated to components of tractions, i.e.

t = C[u], 2)

where C is a second-order tensor describing the stiffness of the interface, independent of u and t.

When an interface is embedded into an infinite elastic medium, a boundary value problem of static
elasticity can be reduced to an integral equation posed at the interface contour I' (see, for example,
Movchan and Willis, 1996)

7[ Z(x —xX)[u](xX)dx' + t(u;x) = p, (3)

where p is a given external load and matrix 2 is defined in Appendix A in the case of plane strain problems.

Interfaces of finite width may involve the jumps of tractions and effects of inertia in dynamic problems.
These interfaces are non-local, in the sense that they pose constraints between different points of a con-
tinuous medium. We introduce here the concept of quasi-local interfaces to model a particular class of
interfacial structures. A quasi-local interface sets prescriptions between points on opposite sides of the
interface and corresponding to each other through a given law. This law will be simple in the examples
presented in the following—for instance, points lying on the same normal line to the interface will be in-
volved for rectilinear or circular interfaces—but it seems not difficult to extend the concept to more
complicated geometries.

In order to explain the behaviour of a quasi-local interface, we begin with the simple example sketched in
Fig. 2 of a two-dimensional microstructure joining two continuous media and mimicking the biologic
structure reported in Fig. 1. In particular, we consider two elastic solids subjected to plane strain defor-
mation and a discrete structure of bars, defined for unit out-of-plane length. The bars are inclined at an
angle o (f8) with respect to the interface (normal) and have length / (Fig. 2). We assume that the angle f8
(Fig. 2) is small, so that the tangential stiffness of the interface is also small.

An elementary cell—consisting of two bars connecting two bodies, as shown in the particular of Fig. 2—
can be considered to evaluate the stiffness of the interface. In particular, the components N, N)(;” of the
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3)

Fig. 2. Interfacial microstructure.

force acting on the node (3) of the structure (an opposite force acts on the solid connected through the
interface) can be represented in the form

EA sin2 sin 2
N® = - ( —ulV cos” o — ul! Ta + 2uY cos” o — u? cos” o + u?) 5 x ) :

EAq sin 2o
G =22 — M
Ny 7 ( u,

(4)

— 4 gin? 3) gin? (Z)M_ (2) qin?

w, ) sin” o+ 2u” sin” o + u > u,” sin” o |,
where o = 71/2 — 5, 0 < § < 1, / is the length of the bars composing the structure, E their Young modulus
and 4 the cross section area. In the case of a weak interface, to a certain order of approximation, the bodies
connected to the interface can be assumed to be rigid. In this case

WV — 4 =0 (5)
and
u? —ul) =20l cos a, (6)

where 0 is the (small) angle of relative rigid-body rotation of the solids connected through the interface.
Consequently, the term

1 .
5 (uﬁz) — uﬁ”) sin 2o
is of order O(0f%) and will be neglected. As a result, a simple condition of contact across the interface is
obtained

NP 2EATE 0 u® — U,
NO ) =T (b ) (7)

§ I [0 1-p u — U,
where U = (u) +u®@)/2. Eq. (7) represents the constitutive equation of the interface, whereas equilibrium
of the unit cell structure imposes continuity of force N, i.e. of resultant forces across the interface. The
stiffness matrix which appears in (7) corresponds to a material of low resistance to a shear parallel to

the interface and a finite stiffness with respect to a loading orthogonal to the interface. In the limit § — 0 the
interface transmits only a normal force, cutting off shear components.
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Fig. 3. Finite width interface.

In the continuum limit, the relation (7) imposes the following transmission condition
() =C(U"-U"), (8)

where (t) is the average of tractions across the interface and U and U™ are the values of the displacement
at opposite sides of the interface; C is the stiffness matrix of the interface.

In addition to the constitutive relation of the interface (8), we also note that in the static case the re-
sultant force is continuous across the interface

F =6nds =-6n"ds" =-F", 9)

where n* are the unit outward normal vectors at the interface boundaries; 6™ is the stress tensor, and ds*
and ds— are the area elements (see Fig. 3).

It may be worth mentioning that a particular case of the interfacial constitutive law (8) and (9) has been
employed by Ru (2001) to describe the van der Waals interaction between adjacent carbon nanotubes.

3. An elastic static inclusion with finite-thickness interface

A circular elastic inclusion connected to an infinite elastic matrix through a structural interface of the
type specified by Egs. (8) and (9) is solved in this section under general conditions at infinity. The problem
setting is similar to that assumed by Bigoni et al. (1998), except that now the interface has a finite thickness
(Fig. 4). Results can have different engineering applications, among which we mention the analysis of
nanotubes embedded in elastic media (see the model presented by Ru (2001)).

Denoting with + quantities referred to the infinite elastic plane and with — quantities referred to the
inclusion, due to the particular geometry of our problem, Eq. (9) becomes

6 (R+0)=0,R, dH(R+0)=0,R. (10)

The force transmitted by the interface is linearly related to the difference between displacements at cor-
responding points in the matrix and in the inclusion. From Eq. (8), the traction vector at the matrix in-
terface can be expressed as:

o =5 U (x7) = U7 (x)], o = sol Uy (x%) = Uy (x7)], (11)

rr r

where s, and s, are the stiffnesses of the interface and U is the displacement vector. When the thickness
of the interface is equal to zero, the well-known model of linear interface—for instance employed by
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Fig. 4. Circular elastic inclusion with microstructural interface.

Bigoni et al. (1998)—is recovered. It should be important to remark that the assumed model of interface
allows to avoid any further explicit consideration of the interface itself, which enters the formulation only
through conditions (10) and (11). A generic displacement field is postulated at infinity:

U'(x) —» UL(x), asx— oo, (12)
which is assumed to satisfy Navier’s equations and to admit the representation (Sendeckyj, 1970; Yu and
Sendeckyj, 1974)

UL (x) = {p(x1,x2), qlx1,x2)}, (13)

where p and ¢ are order N polynomial functions of the coordinates (x,x;).
The problem to be analyzed consists in finding a displacement field U

e corresponding to (13) at infinity;
e satisfying the Navier equations
pAU(Xx) + (A+p)VV -U(x) =0 (14)

in the inclusion and in the matrix (where the Lamé coefficients A and u are equipped with superscripts —
or + when referred to the inclusion or to the matrix, respectively);

o satisfying, through kinematic compatibility and constitutive equations, conditions (10) and (11) at the
interface.

On introducing the complex variable z = x| + ix,, the stress tensor and displacement vector components
can be expressed in terms of the complex potentials ¢(z) and (z) as (Muskhelishvili, 1953):

Uy 41Uy = 5™ (ko) - 20'0) ~ V).

2
(g™ + 0gp = 2((p,(2) +(P/—(Z))7 (15)

oo — 0, + 20, = 27 (29" (2) + ¥/ (2)),
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for plane strain. The complex potentials ¢ and  are analytical functions in the region where they specify
the solution of the elastostatic problem, so that the solution is sought employing the following represen-
tation of the complex potentials

0.0 =3 ot b= a4 (16)
k=0 k=0

analytic inside the disk of radius R and

90+(Z) = Z akzka l//+(Z) = Z bkzka (17)

analytic in the outer region {x : R+ 6 < \/x] +x3 < +oo} and have a pole at infinity. The constants a;, b;
are defined from the conditions at infinity (13) for 0 <k < N. In order to rewrite the interface boundary
conditions in terms of complex potentials, we note that the continuity of forces on the inner and outer
boundaries of the interface corresponds to the fact that for two points of complex plane, say z~ = Re'’ and
zt = (R + 9)e’, the following condition holds:

P (Z)+27¢\ () + Y, () =0 (z7) +z 0 (z7) +ib_ (7). (18)
Following Muskhelishvili’s technique, the boundary integral equations holding in the whole plane be-
come

?{ [90+(t)+190’+(f)+¢+(t)]df:?§ lo_(1) + 19 (1) +¥_(1)]dr

t—z t—z

bl

]{ [</>+(t)+f</>’+(t)+l//+(f)]dt7{ lo_(1) + 70" (1) +¥_(1)]dt

t—z t—z ’
where L_ and L, denote the inner and outer circular boundaries of the interface, respectively.
The system of equations (19) can be solved employing theorems on Cauchy-type integrals and the
complex potentials expansion (16) and (17), thus obtaining

+0o +00 +00 +00 +00 +00
S al) +2 Y k@) + D BE) =D al) Y k@) T+ dE) . (20)
k=—00 k=—o00 k=—00 k=0 k=0 k=0
Considering Eq. (20) on the two circles of radii R and R + 9, i.e. on
_ R+96 R
= (R48)z T =Tl o1, =R, =2 =, 1)
z z
one obtains
+00 +00 +oo
> aR+06)'F+ > ka(R+0) 7+ Y B(R+06)z*
k=—00 k=—00 k=—00
400 400 too
=Y aRF+) kGRZF+> ARz, |2 =1, (22)
k=0 k=0 k=0

which are equivalent to (20).
Collecting coefficients near the same powers of z yields the system of linear equations for the unknown
coefficients ay, by, ¢, dy:

ay(R+0)" + (2 —n)ary(R+0)" " +b_,(R+0) " =c,R" + (2 —n)cr R " +d_,R", (23)
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where n € Z and coefficients a,, b, are known for n > 0 from conditions at infinity, whereas coefficients ¢,
d, are equal to zero for n < 0.

Let us consider now the constitutive equation of the interface (11). Employing the complex potential
representation, the radial and tangential components of the stress tensor can be rewritten in the following
form:

0 = ¢'(2) + ¢'(2) = Re[e™ (29" (2) + ¥/(2))],

2i0 / (24)
o, = Im[e™ (Zo" () + ¥/ (2))],
so that the boundary conditions (11) assume the complex variable representation:
s, (U —U7) +isg(Uf — Uy) = of + a7, (25)

Re-writing condition (25) in terms of Cauchy integrals, taking its series expansion, writing the result on
the two circles of radii R and R + ¢ and collecting terms near the same power of z, yields the following
system of linear equations (see Appendix B for details)

S, + 8y
4u,

S, + 8o _ _ = .
- T (k_c, Rn+l —(1—= _an n __ d—n— R 1
" (k_cpy1 (I —n)e 1 )+ I

(kian (R+0)" — (1 —n)a_s(R+ )" b, (R+06)" "

S, — 8,

(@ (R +0)" = (n+ Day

« (R + 5)n+1 _ bn—l(R + 5)71—1) _ Sr4_ S0 (K_El_anin _ (n + I)C,,+1R”+l _ dn_anfl)
U
=(n+Da 1 (R+0)" 4+ (1 —nP)a_o(R+0) "+ (n+ 1b_,_ (R+ )", (26)

where the index n ranges between —N — 1 and N — 1, moreover, coefficients a, and b, for n > 0 are known
from condition at infinity, and ¢, = d, = 0 for n < 0.

We are now in a position to solve the linear system of equations (23) and (26), thus obtaining the
complex potentials coefficients, solution of our problem and reported in Appendix C.

It can be observed from the solution, coefficients (C.1), that:

e the interface introduces an additional length scale in the problem, namely, the interface thickness J;
o the thickness 0 of the interface results to be always summed to the radius R of the inclusion;
e the solution corresponding to the zero-thickness interface is recovered when 6 = 0.

The result obtained above, holding for generic conditions at infinity, yields an immediate evaluation of
the effect of unphysical overlapping of matrix and inclusion materials occurring in the zero-thickness in-
terface model, where the interface is subject to compressive tractions. In order to avoid the overlapping, in
fact, it is sufficient that the thickness of the interface be greater than the absolute value of the minimum
negative radial displacement jump across the interface. Under the assumed hypotheses of infinitesimal
theory of elasticity, this displacement jump is however very small (compared, say, to the radius of the
inclusion), so that a small interface thickness may compensate any possible overlapping.

3.1. Homogeneous stress field at infinity

The case when an homogeneous deformation is prescribed at infinity, corresponds to a linearly varying
displacement field and to the well-known Eshelby problem. In this case, the general expression for the
complex potentials becomes

0. (z)=aiz+ az7 !, V. (z2) =biz+ bz '4+b sz @9 (2)=cizt+a, Y (z)=dz (27)
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where coeflicients ¢; and b, are related to the conditions at infinity through:

ay = KOW+1 ;b =—ap,, when Uy = (ox1,0),
-

a =P b= when Uy = (0,f). @)
-

a; =0, by =iV2yu., when U, = 7 (x2ym1),

V2

with «, 8,7 € R. Coefficients a_;, b_;, b_3, c1, ¢3, d; can be obtained from the general expressions reported in
Appendix C and result to be given by

ar =P LR 07T o = ) + (s, )R+ D) (Bl — 1) = ) — 12,202 ),

D,
25 (R+0)(u_(res — 1) —p (ko — 1)) —du

b_y = 2Re(a1)(R + 9) (R4 0)(py (k- — 1) +2p_) +4u,p ’

bi(R+96)*
by = PO LR+ 0P (= ) = (R e (o +s0) (1 = 3+ 30

— (R4 0 pyp (s, —so)(I'y 4+ — ) — 12/&#2,},

. Re(a1) (R + 6)’s (e + 1 L Im(@) (R +9) (e, + e
YT R 4 5, (R4 0) (e — 1) + 20 )] R(c_+ D,
_ bR+ 6)(s0 = 5:) (e + D o
03 - R3D2 )
2 +
dl — bl(R + 6) (K+ + l)luf(SVSO(R + 5)F— + 6s,,,u+,u,) , (29)

RD,
where
Ii=p,+ury, I'h=p +px
and
Dy = 5,55 . T (R+8)* + (5, + s0)(R+ 0) 3Ty + Iy + 1242122

As in the case of the zero-thickness interface (Gao, 1995; Bigoni et al., 1998), Eshelby’s statement that
the deformation field is homogeneous inside the inclusion, holds if ¢; = 0, a condition occurring when the
stiffness in radial and tangential directions are equal, s, = sy.

The coefficient a_; associated with the dipole field controls the perturbation of the dilatation in the
elastic matrix. The parameters of the interface can be chosen in such a way that a_; = 0 and hence the
inclusion becomes neutral with respect to the dilatation in the elastic matrix. The above statement follows
from the fact that for sufficiently large u_ > u, and small values of s, and sy, the quantity a_; is negative,
whereas for large values of 6 the same quantity can be made positive. Since a_; is a continuous function, it
vanishes for some set of values of parameters associated to the interface.
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4. Interfaces in dynamics

It may appear natural to consider that a structural interface of finite width possesses an inertia. This
affects the dynamic response of the interface and, as will be shown in the following, may produce interesting
mechanical behaviours. These are investigated through systematic examples that will be developed in the
following. We begin considering a periodic elastic system made up of weak and strong layers, where the
weak layers play the role of the thick interfaces. For the sake of simplicity we restrict the analysis to anti-
plane shear of the periodic structure composed of isotropic elastic alternate layers EE(/))) and EE;; (j€Z) as
shown in Fig. 5.

The thickness, mass density and shear muduli of the layers are denoted by d*, p®), u® (s =0, 1), re-
spectively. Moreover, we introduce the thickness d of two layers d = d® 4 d' and the ratio ¢ between the
two shear moduli & = u® /uV. Time-harmonic vibrations of the structure are considered, so that the dis-

placement amplitude functions “8» with s = 0,1, and j € Z satisfy the following equations within the layers

pOVRE) + pWetul) =0, in B0 s=0,1, j€Z (30)
and the following conditions at the interfaces between elements (j)
ou) oul})
0 1 V) v) ;
W =), WO 030 ey G31)

In addition to the above equations, we assume that the displacement satisfies the quasi-periodicity con-
dition (or Bloch condition) which is common for problems involving travelling time-harmonic waves within
periodic structures:

ul)(x+d) = e"ul)(x), (s —1)d” +jd <x < sdV +jd, (32)

where s =0,1; j € Z and & is the given Bloch parameter. Assuming that the wave propagates in the di-
rection of the x-axis, the problem becomes unidimensional and Eq. (30) reduces to

(s) u(s) " + (s)wzu(s) -0 (33)
M) P 0=
()

(in which s =0, 1; j € Z) so that the functions ug;) can be written as

ul) = AN 0 4 B e (s~ 1)d©) 4 jd < x < sd) + jd, 34
) ) )

=0 O O ~O _M :(O)A//no’exs
=D =0 =) =1 =@ H(z)‘\/ndexj

Fig. 5. Layered structure subject to harmonic anti-plane shearing.
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where s =0,1; j € Z and

(s)

) — [P
o - )
'u(V)

s=0,1.

All the coefficients A(&; and BE;; may be determined recursively imposing quasi-periodicity (32), except four.
These ma;/ be obtained imposing continuity of displacement and traction, Eq. (31), between the two do-
mains E0) and & (l)) and the two domains Eéé; and EE?; Using (32), these boundary conditions yield the

homogeneous system

T
©0) 1) pO) pM " _
'/”{AwwA(owB(owB(m} =0, (3%)
where
1 -1 1 —1
koS —k1 —k()S kl
M= eilhd— kod©) _eikldm e'(hd+k0d<0) _e—ikld“) (36)
ko geilhd— kod©) _kleilqdm —ko geil i(hd-+hkod©)) kle—ikld“)

and
ko = 0o, &y = wa'V.
System (35) has a non-trivial solution if and only if matrix .# is singular
det.# = 0, (37)
a condition which represents the dispersion equation relating @ and / and can be written in the form
wz{ZSa(O)a(l) [cos(dh) — cos(wd Vo) cos(wdVu )} + (82(0((0))2 + (M) ) sin(wd ¥ o) sin(wd Vo )} =0.
(38)

Let us consider now the low-frequency approximation, corresponding to small values of wd®a® and
wd Ve

wz{ — 2¢[1 — cos(dh)] + * (dm(oc(l))2 + sd(o)(ocm))z) (d® + edV))
(39)

0)4

_ P (@O0 L g (502 (2O ) (D42 L 70 (5032 ( 70 L=
= [g(d 9)? 4+ dV (V)2 (2d© + ed )} [(d o) 4+ dO (@)} (d" + 2ed )}} —0.

Direct computations performed for the Eq. (38) show the presence of a band gap on the dispersion
diagram, in the case of high contrast of elastic properties of the layers. In particular, the frequency w (non-
dimensionalized through multiplication by d and «(?) is reported versus the Bloch parameter /4 (multiplied
by d) in Fig. 6, relative to the values ¢ = 0.01, «V) /a® = 0.1, d/d¥ =

We may observe that the presence of the band gap at low frequency can be related to the effect of inertia
of the weak interface layer 5.

As noted by Movchan et al. (in press), for the low-frequency approximation the Eq. (39) can be directly
related to the two-masses discrete chain, representing a diatomic crystal structure in solid state physics
(Brillouin, 1969; Kittel, 1971). In particular, instead of layers 1 and 2, we introduce a chain of particles of
mass m; and m, connected by springs of stiffness ¢ and representing the diatomic crystal structure (Fig. 7).
The displacements u, and vy of the different particles from their position of equilibrium satisfy the equation
of motion
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50 — 16
®do©® ®do©® Dispersion equation
b . 5th branch i —a—— Low- frequency approx.
//\
40 —| [
| 12 -
,\‘ Optical phonon branch
|
|
30 — : 4
|
4 8 —| :
l Band gap |
20 — | |
| |
| | |
—
10 — :
] l
: 1st branch
0 \ ! I — —
(@ o 1 2 3 dh 4 (b) o 1 2 3 dh 4

Fig. 6. Dispersion curves for ¢ = 0.01, &V /o® = 0.1 and d/d® = 4. (a) First five branches; (b) first two branches.

Us-y Vs Us Vs Usi1

Fig. 7. Diatomic crystal structure.

myity = c(vs + vs_y1 — 2uy),
1" ( s 1 s) (40)
mybs = c(us + sy — 205)
and the following quasi-periodicity condition
Ust1 = eihdu“ Us41 = eihdUs; (41)

with d being the period of the array. Assuming the time-harmonic vibration of the system with a radian
frequency o (i.e. u(t), v(¢) o exp iwt), the following dispersion equation relating the Bloch parameter /4 and
the frequency o is obtained

mymy* — 2c(my + my)w? + 2¢*[1 — cos(hd)] = 0, (42)
which, for positive o, reproduces Eq. (39) derived for the low-frequency approximation of the con-

tinuum system. Matching of the coefficients in (39) and (42) yields the constants m;/c and m,/c in the
form
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s _ é [g(dm)am))z +dD () (240 + 8d<1>)} [<d<1>a<1>)2 +dO O (@ 1 26)],
C
(43)
20m +ma) 1oy 2 L0 00y2) (4O 4 egh
-—Tf—_E@(a)+w(a)%i+w).

We note from (43) that, when ¢ is small, the masses m; and m, become large, so that the inertia of the weak
layer contributes toward the stop band on the dispersion diagram.

It may be anticipated that a model more elaborated than the simple diatomic structure of Fig. 7 may
yield a more intriguing dynamic behaviour than the above. The analysis of such a model is the focus of
Section 5.

5. Comparative analysis of inertial and non-inertial interfaces
5.1. Transmission conditions

We begin with the discussion of contact conditions in dynamics for the cases of a zero-thickness non-
inertial interface and for an interface of finite thickness, possessing a non-zero mass and hence inertia.

In particular, the transmission conditions for a zero-thickness interface have the same form both for
statics and dynamics, Egs. (1) and (2), whereas a quasi-local, finite width interface has a finite mass density
and possesses some inertia. In this case the tractions may suffer jumps across the interface. To describe this
in simple terms, we consider the semi-discrete model sketched in Fig. 8. Here, concentrated masses are
connected through springs of stiffness ¢ to continuous elements, say, elastic rods. The position of the generic
mass is singled out by coordinate v; measured from the position of equilibrium. The system of two springs
and a concentrated mass is regarded as a structural interface joining continuous elements.

The forces acting on the boundaries of the sth interface are given by

F_=c(v;—u(0)), F;=c(uld- d(())) —vg), (44)

where function u denotes displacements of all points of continuous elements, referred to a common origin
placed at the left side of the sth interface. The equation of motion of the mass m is

F. — F = mu,. (45)
Hence, the jump in tractions across the interface is
[{] =F. —F. = mi, (46)
and the jump in displacement across the interface is

[u] = u(d —d®) —u(0) = ¢ (F, + F.) = 2¢7' (). (47)

0 >
Vs Vst

Vg, © X
«—d"’ —inferface >

Fig. 8. Interfacial microstructure, with concentrated mass.
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5.2. Wave propagation

Let us consider now propagation of elastic time-harmonic waves along the semi-discrete structure shown
in Fig. 8. The amplitude of the displacement within an elastic rod satisfies the equation

" (x) + o*olu(x) =0, (48)

where o~! is the wave speed within the rod and w is the radian frequency. The amplitude V of vibration for
the mass m is introduced as a solution of the equation

P2V = u(0) + u® (~dVet — 2p), (49)
c
where c is the stiffness of the springs and / is a Bloch parameter associated with a propagating wave. Using
the Bloch condition, the forces acting at the ends of the rod at the left-side of the interface are given in the
form

Ou
pae =V —u(0) (50)
x=0
and
Ou —ihd (0)
L ) =c(Ve™ —u(—d")), (51)
x=—d

where p is now the longitudinal stiffness of the elastic rod.
Representing a solution of (48) by the formula

u = A, cos(wax) + A sin(wax) (52)

and using (50) and (51) we arrive at the following linear algebraic system

A,
Bl 4, | =0, (53)
V
where
: c : c 2c
1a)oc+2ﬁ —1woc+2; -
B = eflu):xd(o) (I(UOC _ %) elcuocd(()) (—ia)oc _ 2!_:) %eﬂhd . (54)
i(hd—ood®) i(hd+oud®) ma?
1+ el( wad?)) 1+ el( +ood?)) -2 2(g

The dispersion equation has the form
det B(h,w) =0, (55)

which has the following equivalent representation

2a§ { cos(dh) — (1 - ’”—‘“2> cos(ad(o)w)} + a){ % e (2 _me? ) } sin(2d o) = 0 (56)

C C

for positive w and A.
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5.3. Eigenvalues and eigenvectors

Numerical solutions of the dispersion equation (56) are presented below, which evidence the influence of
interfacial inertia on the dispersion diagrams. A detailed analysis is also included of ‘trapped modes’,
representing the standing waves within the structure.

The dispersion diagrams describing @ = w(dh) (normalized through multiplication by ¢ and «) are
presented in Fig. 9 for d%c/u = 0.5, moreover, Fig. 9(a) is relative to m/(ud¥«?) = 0.5, whereas inertia of
the interface is set equal to zero, m = 0, in Fig. 9(b). It can be immediately observed from the figures that
the presence of inertia results in an additional dispersion curve, corresponding to a narrow band centered at
around wd o =~ 2 and representing a so-called ‘optical mode’. This becomes evident in Fig. 10, where the
direct comparison of (a) and (b) is reported. It is clear that the effect of inertia consists of a small per-
turbation of the branches on diagram (b), plus an additional optical mode on the diagram (a).

The low frequency stop bands, characterizing waves that cannot propagate through the periodic
structure, are indicated in Fig. 9. We note that the presence of the mass m creates a ‘tunneling effect’ at a
frequency @ € (wg, wc) (Fig. 9); this creates a filter of elastic waves which would enable one to transmit a
signal within a narrow range of frequencies. Filters of this type might be efficient in the design of acoustic
lasers (the so-called ‘sasers’, Makler et al., 1996; Zavtrak and Volkov, 1996).

Points A, B, C and D on the dispersion diagram relative to Fig. 9(a) are associated with standing waves
that exist at the edges of the band gap intervals. The eigenvectors relative to those points provide infor-
mation on the relative wave modes. In particular, on introducing the vector g = (4;,4,, V), the computed
values of the eigenvectors associated to points A, B, C and D are

B = (0.887,-0.462,0), By = (0.240,0.205,0.949),
Be = (—0.140,0.256,0.956), By, = (—0.989,0.144,0)

showing that vibrations associated with A and D correspond to motions within elastic rods, whereas the
eigenvectors f; and . correspond to vibrations associated to the inertia of the interface.

10 — 10 —
®dO o 1 5th branch ®dOg 4th branch
- | - |
| |
. dOc/p=05, mi(ud©@c)=05 | 5| doc/pu=05 m=0 |
l l
] l ] l
6 | 6 |
| |
| |
- | - |
| |
4 — | 4 — |
| |
o j 1 A 1
2nd stop band | [ |
cld I ! |
2 —{'pass band ! 2 1st stop band |
Bl T f | \
J'1st stop band | \
Al | 1 ! st branch

, 1stbranch ‘

0 | | I — 0 | | I —

(@ o 1 2 3 dhsa (B o 1 2 3 dh 4

Fig. 9. Dispersion curves for d”¢/u = 0.5. (a) Inertial interface m/(ud®o?) = 0.5; (b) interface without inertia, m = 0.
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10 —
0dOgss—AAA—Ar—A—Ar—FAFA

|

|

8| dO%%/u=05|

|

|

] l
6JW_A_A_A‘

|

i m/(ud©) ¢?) =05 1

—A— m=0 :

4 —| |

|

|

Fig. 10. Dispersion curves for d%c/u = 0.5. Comparison between inertial interface, m/(ud®o?) = 0.5, and interface without inertia,
m=0.

5.4. Comparison with the continuum model

The model of inertial interface shown in Fig. 8 can be considered as a higher accuracy approximation
(compared to the diatomic chain reported in Fig. 7) of the layered structure sketched in Fig. 5. Assuming
that @ > 0 and expanding Eq. (38) for small values of wdVal!) we obtain

(1) ()2
2soc(°)oc(l){ cos(hd) — (1 - M) cos(wd(())oc(o))} + {(ex
(57)
(w0d Ve

O wd e [ 1 —
+ (') tod" ( ;

) sin(wd Vo) =0,

a dispersion equation having the same structure as Eq. (56). In order to match coefficients of Egs. (56) and
(57), we assume

M4\ 2
o= o, m 2:1 d o (58)
C(dd(())) 2\ d©)g(0)

and set the quantity d%¢/u equal to a positive root of the second-order polynomial in y:
M\2] g
2 x _
€ +<a(0)) ]d<o)x+20. (59)

Comparison of dispersion diagrams for the semi-discrete system with inertial interface (Fig. 8) and the
continuum system (Fig. 5) are reported in Fig. 11. The examples refer to oV /a® = 0.1, d/d® =4 and
& = 0.01 in the case of Fig. 11(a), whereas ¢ = 0.003 in Fig. 11(b). Using Eq. (58) and selecting the largest
root of Eq. (59), the above parameters are obtained for the semi-discrete system m/[c(ad®)’] = 0.045, and
dY¢/u = 66.667 in the case of Fig. 11(a) and d"¢/u = 222.222 for Fig. 11(b).

_m .1
c(ocd(°>)2x €
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Fig. 11. Dispersion curves for continuum (o!) /¢ = 0.1, d/d® = 4) and semi-discrete models (m/[c(ad®)?] = 0.045). (a) Dispersion
curves relative to & = 0.01 and d”¢/u = 66.667. (b) Dispersion curves relative to ¢ = 0.003 and dVc/u = 222.222.

The results in the figures evidence that the accuracy of the approximation increases when values of the
parameter ¢ become small. The semi-discrete model reproduces the acoustic and optical modes to a high
accuracy and provides a correct structure of the whole dispersion diagram within a wide range of fre-
quencies.

6. A structural interface as a sharp filter for elastic waves

The simple structural interface model introduced in Section 5 is employed below to design a sharp filter
for elastic waves. Let us consider, in particular, the periodic structure shown in Fig. 12, where we analyze
shear and pressure waves propagating in the direction of the x-axis.

The structure consists of elastic layers with mass density p alternate to rigid layers with mass density m
and connected to these through a structure similar to that sketched in Fig. 2. Due to the particular prop-
agation condition considered here, the analysis can be performed within the frame of the one-dimensional

yL elastic  rigid
> E,v,p m ~— d 4O,

Fig. 12. Structural interface model for a periodic, two-dimensional structure.
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model of inertial interface shown in Fig. 8. We employ the following parameters describing propagation of
longitudinal and transverse waves: the Young modulus is £ = 200 GPa, the Poisson ratio is v = 0.3, and the
mass density is p = 7800 kg/m?®; the geometrical parameters (see Fig. 2) are

0=02, =137, [=05m, 4=0.1m (area per unit length), dy=1m,

finally, the mass per unit out-of-plane area of the rigid layer within the interface is m = 1000 kg/m>. The
stiffness coefficients and the wave speeds are given by

_2E48° 1
~ I 2lcosu

wo=p=769x10" Pa, ¢ =1.6x10" Pa/m, o' = \/g =99.3 m/s

for transverse waves, and

L 2EA(1-0%) 1
- ! 21 cosa

ty =2u+ A =269 x 10° Pa, ¢,

2t 2
' = “p+ — 185.8 m/s

for longitudinal waves; here u = E/(2(1 +v)),A = Ev/((1 +v)(1 — 2v)) are the Lamé elastic moduli.
Pressure and shear modes are presented in Fig. 13, whereas Fig. 14 refers to the same set of parameters
as in Fig. 13, but the mass of the interface is neglected, so that the interface has no inertia. It is shown that
when inertia of the interface is not present (Fig. 14) the system is characterised by a wide pass band for
pressure waves at low frequencies, whereas the shear waves have a wide stop band within the range of
frequencies ~63-312 Hz. The inertial interface changes qualitatively these dispersion diagrams (Fig. 13), so
that the pressure waves are not transmitted within the interval ~7-281 Hz, whereas a narrow pass band has
been created for shear waves of ~167-186 Hz. Hence, different applications of structures of the type

= 3.8 x 10° Pa/m,

400 — 400 —
(O] Q)]
, 3rd branch
300 — : 300 —
: 1 2nd branch
| ! 1 |
|
pass band | |
|
200 — ! 200 —
| ; |
T — 2nd branch }
. | .
; 1
|
100 —| | 100 — |
|
|
| ‘ 1st branch | :
| |
|
0 : 0 I 1st branch
\ ‘ \ ‘ \ ‘ g | [ \ \ g |
@ O 1 2 3 dh 4 (b) © 1 2 3 dh 4

Fig. 13. Dispersion curves for the inertial interface model (Fig. 12). (a) Shear mode and (b) pressure mode dispersion diagrams.
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|
w l
|
200 —| [ 200 —| |
stop band : I
|
! I
7 | 7 pass band |
! I
100 —| | 100 — |
! I
! 1stbranch |
! |
|
w |
0 L T 0 T
\ \ \ [ r | \ \ \ I |
0 1 2 3 dh 4 0 1 2 3 dh 4

(a) (b)

Fig. 14. Dispersion curves for the inertial interface model (Fig. 12), but involving interfaces of zero mass. (a) Shear mode and (b)
pressure mode dispersion diagrams.

considered here can be advocated, for instance, in the field of vibration insulation or in creating sharp filters
for elastic signals, which might be used in the design of acoustic lasers (sasers).

7. Conclusions

A novel concept of structural interface has been proposed in the present paper. This interface possesses a
finite width and an inertia. Both these features influence behaviour of stress and displacements in composite
structures. Our examples show that for static problems the thickness of interface introduces an additional
structural parameter, whereas in dynamics the effect of inertia becomes important in the evaluation of
transport properties of elastic structures. Comparison between discrete and continuous structures reveals
important features associated with low frequencies which are common to both types of structures.

Possible applications of the proposed model is the design of filters of elastic waves and acoustic
lasers.
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Appendix A. Components of the kernel matrix .

For plane strain elastic problems, the matrix % has the components
G G G
P, = ,uz 211 ) 12 222 ’
0x3 Ox; Oxs 0Ox

62G12 62G22 azGlz 62Gll
Lio=Lr = ulA+2 2 Al
12 2 = pu(A+ ,U)( o2 + o axz) + #( o + v ot >v (A1)

, Gy G, , %Gy
=(1+2 2 2u
P = (A+2u)° o A M e T e
where the Green’s tensor is
L O 1
Gy(X) = =3 3 (5,,1og x| - x x2) (A.2)

in which k = (1 +3u)/(A+ u) and A and y are the Lamé elastic moduli, so that taking derivatives yields

2u 1 x2x2
g e ——8 172
! (1 +x) <x2 x° )’
4 xx(xt —3x3)
L=y = A3
12 21 2+ %) o . (A3)
2u 1 xix3 — x5
L. L (LG T
2 (1l + k) <X2+ X0

Appendix B. From Eq. (25) to Eq. (26)

In terms of Cauchy integrals, condition (25) takes the form:

Sr+Sof e (ki (1) — 19/ (1) — . (1)) dt Sr+S9f e (kg (t) =t/ (1) — y_(1))ds
du, Jo, t—z du_ J- t—z

LSS j'{ e (1, ¢, (1) = 19 (1) =Y, (1) dt s, — sy ]{ e(k_o_(t) — 19" (t) — y_(¢))dt

t—z 4u_ t—z

7{ (@, (1) + ¢L.(1) — e (L (1) + ¥/, (1))] s,~+Sej{ (i 0. (1) — 79!, (1) — Y. (1)) dt

L. t—z T A, t—z

stse [ Sk o () -1 (0~ () _s—so [ &V, (1) — g () — ¥, (1) dr
a 4p_ ji t—z + 4p, ja t—z

_s,.—s()f e (k_p_(r) —tg" (1) —y_(1))ds ]{ [0/, (0) + ¢/, (1) — (19! (1) + Y. (1))] dt
dp_ J-

(B.1)

Taking the series expansion of (B.1) and writing it on the two circles of radii R and R + ¢, i.e. employing
conditions (21), we obtain
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+00 +00
Srtso L K a;j(R+0) - aR+5’1’ bi(R+6)z7!
2 |2 \™ s ’
‘u+ J=—00 J=—0o0 Jj=—00 ‘

1 S 2 . — S — S, 1 = i1
—— |« RiZ1 — e RIZ\ T — d.RIz! r 20 F.(R 4+ 8§V
5 (K .E: ¢R'z E: JCiRz AE: Rz +— o Ky ‘/‘:Eﬂo a;(R+9)z

1 +00 ) ) +00 o +00 o
- g Ja;(R+90) 7~ E bi(R+9) z’“) 2<K E CRIZ — E Jje,RIZ™ — E ch/z/“>]
M —
Jj=0

Jj=— Jj=—00 J=0 Jj=0

+00 . ] +00 ) ) +00 ) ) +00 _ . )
=Y JjaR+8Y I+ > @R+ 8T = > - Da R+ 6y = Y bR+ 8y

j==o0 j==o0 Jj==o0 Jj==o0

(B.2)

After simplification and collection of coefficients near the same power of z in (B.2), the system of linear
equations (26) for the unknown coefficients is obtained.

Appendix C. Coefficients in the expansion of complex potentials

En, R + 5 2n—-2
= P RO R 0P = ) — 40— i

+ (s +50) R+ [(n+ 1)(p- — ) = (n = DI'']}

4 ot (o Rt 07T~ ) = (5= )R + 9)x + Dpss?

+ (st 50) R+ p [(n+ 1) (u. —p,) — (n—= DI = 4(n* = D)2y},
sS(R+0)I, =TT —dp,u
Ss(R+0)I +p —py) +4u, ’

45rsp(R+6) (e p — kopy) — 2(s, + s0) p
5pSo(R 4 0)T" + 2(s, + s9) py

by (R+0)"(n—1)
_ 2
T (= )]+ (50— 5:) (R + O (. + i = 4(n* = Dy }
an+l(R + 6)2n+2
MY
— 42 (1 = 12 1 + s — 5,)(R +0)(® — D)y + Dyl

— (sv + 50) R+ O)pp 200, + D+ 020 = I+ (4 1) (e, — )] |,

b_y = 2Re(a))(R + 6)

b, =a(R+9)

)

{s,s(,(R + 0T (1 = y) = (s +50) (R+ O)p[(wy, — p)(n+ 1)

{soso(R+ 00 [l + Vi (I'; = T) =ty — p )]

o = aol"; +bo(p, — ) 28, (R + 0)*s,50(p, — p)T*
(ko + Dy (- + Dpyfsso(R+ )T+ 2(s, + so)p,p_]
L 28R+ 0 25y + s0) (s — 1) + (57 = 50) (<, + D]
(ke + D [srso(R + 0)IT + 2(s, + s9)pyp ] ’
o Rel@)®R+0) s (e, + D m(a)(R+0)(, + i

R[s,(R+0)(I'" +p_ — ) +4p, p] R+ 1)py
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ay(R + ) suso(rc, + D
R2[s,s9(R+ 0)T" + 2(s, + so)pppi_]’
b,,_lRinil (R + 5)n

D,
@yt R YR+ 6)" (ks 41
_l’_
D,
g [ = (s s0)(n = 1) + (5. = s0) (0> = 1)] },
= boI'" —ap(icep —K_pi.) _ 2a>(R + 5)3sr39[(’€7 + Dy (eop —cp) + (py — p )T (C.1)
(k- + Dpy (- + Dpyfseso(R+ )T+ 2(s, + so)p,p_]
2a5(R + 8) i _[(s, + 50)2T°F = (s, — s0) (i + Dpa_]
(ke + D) [srso(R + 0)I' +2(s, + s0) . pt]
by 1RV (R + )" Dy
oy = D B RA T DI (R4 )+ g [(5 = 50)(7 = 1)+ (s, +s0)n + 1]}
@y R (R +6)" (n+ 1) (s +
_l’_
D,
+ g [ (s = s0) (1 = 2) +2(s, +50)] },

C) =

(ks + D g (s9 = 5.)(n = 1)

Cntl =

5 {s:50(R+S)I";

b

Di {s,s0(R+8)(I'" —T7)

where n > 2,
Ii=wp +py, Th=xp +pu
and

D, = s,5(R+ 0TI 4 (s, + )R+ Oy pu [T (n+ 1)+ T (n—1)] +4(n* — 1)1 4.
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